To date, athletes were not observed as a vulnerable group, so they were not a subject of automatic Hate Speech detection and recognition from content published on Social Media. This paper explores whether a model trained on the dataset from one Social Media and not related to any specific domain can be efficient for the Hate Speech binary classification of test sets regarding the sports domain. The experiments deal with Hate Speech detection in Serbian. BiLSTM deep neural network was learned with different parameters, and the results showed high Precision of detecting Hate Speech in sports domain (96% and 97%) and pretty low Recall. https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00766-9 Share this: Click to print (Opens in new window) Print Click to share on Facebook (Opens in new window) Facebook Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Reddit (Opens in new window) Reddit Click to share on WhatsApp (Opens in new window) WhatsApp Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Like this:Like Loading... Post navigation Addressing hate speech through education: a guide for policy-makers (UNESCO) Online Hate and Harassment: The American Experience 2023 (ADL)