In order to present a more accurate spectrum of severity and surmount the constraints of seeing hate speech as a binary task (as typical in sentiment analysis), we classify hate speech into four intensities: no hate, intimidation, offense or discrimination, and promotion of violence. For this, we first involve 31 users in annotating a dataset in English and German. To promote interpretability and transparency, we integrate our ML system in a dashboard provided with explainable AI (XAI). By performing a case study with 40 non-experts moderators, we evaluated the efficacy of the proposed XAI dashboard in supporting content moderation. Our results suggest that assessing hate intensities is important for content moderators, as these can be related to specific penalties. Similarly, XAI seems to be a promising method to improve ML trustworthiness, by this, facilitating moderators’ well-informed decision-making.

https://jku-vds-lab.at/publications/2023_ditox_hate_speech_xai/

By author

Leave a Reply

Your email address will not be published. Required fields are marked *