“Motivated by the lack of annotated data specifically tailoring religion and the poor interoperability of current datasets, in this article we propose a fine-grained labeling scheme for religious hate speech detection. Such scheme lies on a wider and highly-interoperable taxonomy of abusive language, and covers the three main monotheistic religions: Judaism, Christianity and Islam. Moreover, we introduce a Twitter dataset in two languages—English and Italian—that has been annotated following the proposed annotation scheme.”
https://peerj.com/articles/cs-1128.pdf