Hate speech detection is the task of detecting if communication such as text, audio, and so on contains hatred and or encourages violence towards a person or a group of people. This is usually based on prejudice against ‘protected characteristics’ such as their ethnicity, gender, sexual orientation, religion, age et al. Some example benchmarks are ETHOS and HateXplain. Models can be evaluated with metrics like the F-score or F-measure. https://paperswithcode.com/task/hate-speech-detection/codeless Share this: Click to print (Opens in new window) Print Click to share on Facebook (Opens in new window) Facebook Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Reddit (Opens in new window) Reddit Click to share on WhatsApp (Opens in new window) WhatsApp Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Like this:Like Loading... Post navigation A web framework for information aggregation and management of multilingual hate speech (PubMed) Identifying Hate Speech and Attribution of Responsibility: An Analysis of Simulated WhatsApp Conversations during the Pandemic (MDPI)